

COMPOSITE MESH

Intended use

Composite mesh is designed to replace conventional metal mesh used for reinforcement of various construction structures.

Design

Composite mesh consists of the following components:
 BFRP bars, arranged in the perpendicular pattern to each other Plastic fixings in the bars cross points

Marking

Composite mesh (2,2-50)/(2,2-50)*50*150, where: Composite mesh – composite BFRP mesh, (2,2-50)/(2,2-50) – bar diameter and length of each opening side, mm; 50 – mesh width, cm; 150 – mesh length, cm.

Dimensions

Bar (wire) diameter	2,2 mm	2,2 mm	3 mm
Opening sizes	50x50 mm	100x100 mm	100x100 mm
Weight per 1 sq.m.	360 g/m²	170 g/m²	316 g/m²

Various bar diameters and opening sizes are available upon customer request.

Technical characteristics in comparison

Characteristic		Mesh type
	Composite mesh	Metal mesh from wire Bp-1 GOST 23279
Opening size	50x50 mn	n
Bar (wire) diameter	2,2 mm	4,0 mm
Bar (wire) tensile strength, not less than	1 200 MPa	570 MPa
Bar (wire) tensile force	760 kgf	720 kgf
Bar (wire) elongation	2,50 %	2,50 %
Thermal conductivity coefficient, not more than	0,46 W/(m°C)	56,00 W/(m°C)
Weight per mesh area	360 g/m ²	2 220 g/m ²
Electrical conductivity	non-conductive	conductive
Corrosion and chemical resistance	very high	low
Magnetic characteristic	non-magnetic	magnetic
Fixing strength - shear	30 kgf	not rated
Fixing strength - pull	20 kgf	not rated
Delivery in sheets	no deformation	possible deformation
Delivery in coils	No deformation. Unrolled mesh regains its initial form.	Severe deformation in coils. Unrolled mesh needs additional treatment.

- Technical specifications «Composite mesh from BFRP rebars» TU 5714-011-13101102-2012
- Trademark certificate No 483878 ROCKMESH

Advantages

- LOW THERMAL CONDUCTIVITY of the composite material prevents "thermal bridging" between building's wall and environment, retains moisture conditions of a structure
- CORROSION AND CHEMICAL RESISTANCE of the composite material prevents destruction of a structure
- STRENGTH of the composite material ensures increased reliability of an entire structure
- LOW WEIGHT of the composite material allows for reduction of transportation costs, storage, handling, facilitates installation works

COMPOSITE BARS

Intended use

Composite bars are designed for reinforcement of prestressed and non-prestressed construction structures and components.

Design

Composite bars are BFRP or GFRP bars of a round section, cut to length, sand coated or plain.

Marking

BAR-G 12-P-8, where: G – composite GFRP rebars;

12 - rebars diameter, mm;

P – rebars sand coating; 8 – rebars length, linear m. BAR-B 10-100 coil, where: B – composite BFRP rebars; 10 – rebars diameter, mm; 100 – rebars length, linear m; coil – manufactured in coils.

RESIDENTIAL CONSTRUCTION AND CIVIL ENGINEERING	■ Foundations of buildings and structures; ■ Repair and reinforcement of bearing capacity of brick and reinforced concrete structures.
Industrial construction	 Reinforcement of concrete reservoirs, storages of water treatment facilities, sewage lids; Elements of the chemical industry infrastructure; Reinforcement of concrete floors; Hydraulic structures.
road building	■ Reinforcement of roads; ■ Overhead system poles; ■ Road and airfield slabs, sulfur concrete slabs.

BRIDGE CONSTRUCTION AND REPAIR

■ Bridge deck slabs; ■ Bridge guards; ■ Sidewalks; ■ Reinforcement of shore facilities

RAILROAD CONSTRUCTION

 As a component of concrete sleepers for high speed trains and underground railway system

Independent test results

Tensile Properties	BAR-G (GFRP Bars)		BAR-B (BFRP Bars)			
	16 mm	20 mm	25 mm	16 mm	20 mm	25 mm
Ultimate Strength (MPa)	1052	1043	873	1177	1060	900
Tensile Modulus (GPa)	47-7	48.7	48.1	47.8	48	47.2
Ultimate Strain (%)	2.21	2.14	1.81	2.46	2.21	1.90

According to study "Longitudinal Tensile Properties of Sand-Coated Glass & Basalt Fibre-Reinforced Polymer (GFRP & BFRP) RockBar(TM) Rebars of 16, 20, 25 mm diameter" by an independent laboratory of University of Sherbrooke, Canada, 2016

Physical and mechanical properties depending on rebars' diameter

Rebars'	BAR-B (BFRP rebars)			
diameter	Ultimate tensile stress, MPa, not less than	Bending stress, MPa, not less than		
2	1000	1000		
4	1000	1000		
5	1000	1000		
6	1000	1000		
8	1000	900		
10	1000	900		
12	900	900		
14	800	900		
16	800	800		

Technical characteristics

Characteristic	BFRP rebars	GFRP rebars	
	BAR-B	BAR-G	
Length	up to 12 m (Ø up to 10 mm – in coils)		
Diameter	2 -16 mm, upon request - up to 36 mm		
Tensile modulus, not less than	50 000 MPa	50 000 MPa	
Density	2.0 g/cm³	2,0 g/cm³	
Thermal conductivity coefficient	< 0.46 W/(m°C)	< 0.56 W/(m°C)	
Tensile elongation	2.2 %	2.2 %	
Heat resistance	300 °C	150 °C	
Corrosion and chemical resistance	very high	high	
Electrical conductivity	non-conductive		
Magnetic characteristic	non-magnetic		

≡ Regulatory documents

- Technical specifications «GFRP rebars» TU 2296-014-13101102-2012
- Technical specifications «Composite rebars» TU 5714-007-13101102-2009,
- Trademark certification № 360598 "COMPOSITE BARS"

Advantages

- ABSOLUTE CORROSION RESISTANCE, ALKALI RESISTANCE
- HIGH STRENGTH
- LOW WEIGHT
- ABSOLUTE ECO-FRIENDLINESS AND FIRE SAFETY

- DURABILITY
- DIELECTRIC
- NON-MAGNETIC
- LOW THERMAL CONDUCTIVITY